Abstract
We report on a theoretical study of the electronic and optical properties of freestanding, [0001] oriented wurtzite GaN nanowires and nanotubes based on an atomistic tight binding approach. The developments of band structure, optical properties, and effective mass are studied as functions of nanowire size. It is shown that the valence band structure of the nanowire depends on the lateral size of the nanowire and that the order between the first two valence bands is reversed above a critical size. The fundamental optical transition is found to be strong for nanowire sizes below, and weak for nanowire sizes above, this critical size. The first strong optical transition is found to have a very large optical polarization anisotropy with the dominant component parallel to the nanowire axis. It is also shown that there is a simple functional relationship between the conduction band effective mass and the subband energy, while no such general relation can be found for the valence bands. For the nanotubes the change in energy compared to the solid nanowire is found to be strongly related to the distribution of the original nanowire state wave function. The incorporation of a hole in the nanowire will force a change in the ordering between the first two valence band states compared to a below critical size nanowire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.