Abstract

We report on studies from an experimental and theoretical viewpoint of the electronic structure of mercury digallium selenide, HgGa2Se4, a very promising optoelectronic material. In particular, the method of X-ray photoelectron spectroscopy (XPS) was used to evaluate binding energies of the constituent element core electrons and the shape of the valence band for pristine and Ar+-ion bombarded surfaces of HgGa2Se4 single crystal. First principles band-structure calculations were performed in the present work using the augmented plane wave + local orbitals (APW+lo). These calculations indicate that the Se 4p states are the main contributors at the top and in the upper portion of the valence band with slightly smaller contributions of the Ga 4p states in the upper portion of the band as well. Further, the central portion of the valence band is determined mainly by contributions of the Ga 4s states, and the Hg 5d states are the principal contributors to the bottom of the valence band. These theoretical data are in fair agreement when matching on a common energy scale of the X-ray emission bands giving information on the energy distribution of the Se 4p and Ga 4p states and the XPS valence-band spectrum of the HgGa2Se4 crystal. The principal optical constants are elucidated from the DFT calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.