Abstract

The electronic structure and related optical properties of an emerging thin-film photovoltaic material CH3NH3PbBr3 are studied. A block-shaped α-phase CH3NH3PbBr3 single crystal with the natural ⟨100⟩ surface is synthesized solvothermally. The room-temperature dielectric function ε = ε1 + iε2 spectrum of CH3NH3PbBr3 is determined by spectroscopic ellipsometry from 0.73 to 6.45 eV. Data are modeled with a series of Tauc-Lorentz oscillators, which show the absorption edge with a strong excitonic transition at ∼2.3 eV and several above-bandgap optical structures associated with the electronic interband transitions. The energy band structure and ε data of CH3NH3PbBr3 for the CH3NH3(+) molecules oriented in the ⟨111⟩ and ⟨100⟩ directions are obtained from first-principles calculations. The overall shape of ε data shows a qualitatively good agreement with experimental results. Electronic origins of major optical structures are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.