Abstract

ContextNitisinone is a medium-sized organic molecule that is used in treating hereditary tyrosinemia type 1 (HT-1). The structurally analogous mesotrione, however, is used as a pesticide/herbicide. What molecular properties are responsible for the similarity/dissimilarity of these molecules is investigated here. The solvent effect reduces the electron affinity to rather negative values and causes the negative electron affinity which manifests itself in a very high positive absolute reduction potential.MethodsB3LYP method was utilized for a geometry optimization of nitisinone and mesotrione in their neural and ionized (L0, L+, L−) forms of 6 structures. The calculations were conducted in water as a solvent using conductor-like polarizable continuum model (CPCM), nitisinone also in vacuo. The complete vibrational analysis at the true energy minimum allows evaluating the thermodynamic functions with focus to the zero-point energy and overall entropic term. The change of the Gibbs energy on reductions and/or oxidation facilitates evaluating the absolute reduction and absolute oxidation potentials. Also, DLPNO-CCSD(T) method that involves the major part of the correlation energy has been applied to nitisinone and mesotrione and their molecular ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call