Abstract

The formation and migration energies of interstitial hydrogen in rutile TiO2 are obtained from first principles calculations. The computational approach was based on density functional theory with a semilocal generalised-gradient approximation functional, supplemented with an on-site Hubbard term to account for correlation among the Ti 3d electrons. Charge-transition levels are calculated and compared to previous theoretical studies. The donor character of hydrogen is examined in depth, focusing in particular on the tendency to form polaron-like configurations with the unpaired electron trapped at nearby titanium ions. Distinct minimum-energy paths of hydrogen migration and associated energy barriers were determined by the nudged elastic-band method. The present findings show clearly the strong anisotropy in the energy barriers for migration within the open c channels as opposed to migration crossing adjacent channels of the rutile lattice. For the rate-limiting step which leads to macroscopic diffusion along the c axis the corresponding rate and diffusion coefficient were also determined from transition-state theory. The results are discussed in connection to existing measurements of hydrogen diffusion and recent findings from electron paramagnetic resonance, electron–nuclear double resonance and muonium spectroscopies that probed the spatial localization of the electron spin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call