Abstract
Based on spin-polarized density functional theory we studied the electronic structures, magnetic and optical properties of Ni-doped ZnO nanowires. The magnetic results show that three magnetic coupling states are present: ferromagnetic (FM), antiferromagnetic (AFM), and paramagnetic (PM) states for the six kinds of Ni-doped configurations. The calculated energy results indicate that antiferromagnetic coupling is more stable when Ni atoms substitute for Zn atoms in the ZnO nanowires on the outside surface along the (0001) direction. AFM coupling has a metallic nature. The FM results from the density of states show that the spin polarization phenomenon appears near the Fermi level and causes strong hybridization between Ni 3d and O 2p. Moreover, the magnetic moments mainly originate from the unpaired electrons of the Ni 3d orbitals and the electrons of the O 2p orbitals contribute a little to the magnetic moments. The coupling of FM has a half-metal nature. In addition, the optical properties indicate that the absorption peaks show a significant red shift and good emission in the far UV band while a blue shift is apparent for the near UV band (380 nm). These results indicate that the Ni-doped ZnO nanowires are promising magneto-optical electronic materials and they can be used for nanoscale spintronics device materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.