Abstract

In this study, the electronic structure of V-doped ZnO system is studied by means of density functional theory. Different concentrations of V and rising of Fermi level increase the relative occupation of majority/minority spin of 3d state and also induce strong spin-splitting. The existence of three different states of V spin moment has been confirmed and is found to be concentration dependent. We found that O p-orbitals are responsible for the origin of the magnetic moment. Ruderman–Kittel–Kasuya–Yosida mechanism and the atomic spin polarization of V are the key factors for the appearance of ferromagnetism in V-doped ZnO system. The synthesized nanoparticles exhibit hexagonal wurtzite crystal structure, where both crystallite size and lattice parameters vary with V content. Magnetic measurements at room temperature confirm the ferromagnetic behaviour of V-doped ZnO system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call