Abstract

Electronic structures and magnetic properties of the binuclear bis(μ-oxo) U(IV)/U(IV) K2[{(((nP,Me)ArO)3tacn)U(IV)}2(μ-O)2] and U(V)/U(V) [{(((nP,Me)ArO)3tacn)U(V)}2(μ-O)2] (tacn = triazacyclononane, nP = neopentyl) complexes, exhibiting [U(μ-O)2U] diamond-core structural motifs, have been investigated computationally using scalar relativistic Density Functional Theory (DFT) combined with the Broken Symmetry (BS) approach for their magnetic properties. Using the B3LYP hybrid functional, the BS ground state of the pentavalent [U(V)(μ-O)2U(V)] 5f(1)-5f(1) complex has been found of lower energy than the high spin (HS) triplet state, thus confirming the antiferromagnetic character in agreement with experimental magnetic susceptibility measurements. The nonmagnetic character observed for the tetravalent K2[U(IV)(μ-O)2U(IV)] 5f(2)-5f(2) species is also predicted by our DFT calculations, which led practically to the same energy for the HS and BS states. As reported for related dioxo diuranium(V) systems, superexchange is likely to be responsible for the antiferromagnetic coupling through the π-network orbital pathway within the (μ-O)2 bridge, the dissymmetrical structure of the U2O2 core playing a determining role. In the case of the U(IV) species, our computations indicate that the K(+) counterions are likely to play a role for the observed magnetic property. Finally, the MO analysis, in conjunction with NPA and QTAIM analyses, clarify the electronic structures of the studied complexes. In particular, the fact that the experimentally attempted chemical oxidation of the U(V) species does not lead straightforwardly to binuclear complexes U(VI) is clarified by the MO analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.