Abstract

The band structure and distributions of the electron and spin densities of samarium orthoferrite have been calculated within the framework of the first-principles density functional theory in the LSDA + U approximation taking into account the collinear antiferromagnetic ordering of the magnetic moments of iron and samarium cations. The possibility of inducing a ferroelectric state at temperatures below the antiferromagnetic ordering temperature of the magnetic sublattice formed by samarium cations has been considered using the results of the group-theoretical analysis. In the high-temperature range, the formation of regions with a spontaneous electric polarization is possible in the presence of additional factors that reduce the symmetry of the crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.