Abstract

The electronic structure and magnetic properties of the moleculer-based magnet [Cu(mu-cbdca)(H(2)O)](n) (cbdca=cyclobutanedicarboxylate) compound with copper ions as the metallic magnetic center were studied using the FP_LAPW(first-principle full-potential linearized augmented plane wave) method of first-principles, based on density functional theory (DFT) with generalized gradient approximation (GGA) method and local spin density approximation (LSDA) method. The total energies of the ferromagnetic, antiferromagnetic. and non-magnetic phases of organic-inorganic metal phosphonoacetate [Cu(mu-cbdca)(H(2)O)](n) were calculated. The calculations revealed that the compound [Cu(mu-cbdca)(H(2)O)](n) had a stable metal-ferromagnetic ground state, which was in agreement with the experimental result. There were large and positive spin populations on copper (II) ions, small and positive populations on the oxygen and carbon atoms of the bidentate ligand, which connected to the copper ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.