Abstract

Electronic structures of three superconducting rare-earth iron silicides (Lu;Y;Sc)2Fe3Si5 and non-superconducting Lu2Ru3Si5, adopting a tetragonal crystal structure (P4/mnc), have been calculated employing the full-potential local-orbital method within the density functional theory. The investigations were focused particularly on the band structures and Fermi surfaces, existing in four bands and containing rather three-dimensional electronlike and holelike sheets. They support an idea of unconventional multi-band superconductivity in these ternaries, proposed earlier by other authors for Lu2Fe3Si5, based on heat-capacity, resistivity, electromagnetic and muon spin rotation measurements. Finally, a discussion on differences in the electronic structures between the investigated here and other common families of iron-based superconductors is carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call