Abstract

The conformational space of 1H-Indole-3-Acetic Acid (IAA) was scanned using molecular dynamics at semiempirical level, and complemented with functional density calculations at B3LYP/6-31G** level, 14 conformers of lowest energy were obtained. Electronic distributions were analyzed at a higher calculation level, thus improving the basis set (B3LYP/6-311++G**). A topological study based on Bader's theory ( atoms in molecules) and natural bond orbital (NBO) framework performed with the aim to analyze the stability and reactivity of the conformers allowed the understanding of electronic aspects relevant in the study of the antioxidant properties of IAA. Intramolecular hydrogen bonds were found and were characterized as blue-shifting hydrogen bonding interactions. Furthermore, molecular electrostatic potential maps (MEPs) were obtained and analyzed in the light of AIM and NBO results, thus showing subtle but essential features related not only to reactivity but also with intramolecular weak interactions, charge delocalization and structure stabilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.