Abstract

The binary compounds ZnSb and ZnAs with the CdSb structure are semiconductors (II-V), although the average electron concentration (3.5 per atom) is lower than that of the tetrahedrally bonded III-V and II-VI archetype systems (four per atom). We report a detailed electronic structure and chemical bonding analysis for ZnSb and ZnAs based on first-principles calculations. ZnSb and ZnAs are compared to the zinc blende-type semiconductors GaSb, ZnTe, GaAs, and ZnSe, as well as the more ionic, hypothetical, II-V systems MgSb and MgAs. We establish a clearly covalent bonding scenario for ZnSb and ZnAs where multicenter bonded structural entities (rhomboid rings Zn${}_{2}$Sb${}_{2}$ and Zn${}_{2}$As${}_{2}$) are connected to each other by classical two-center, two-electron bonds. This bonding scenario is only compatible with a weak ionicity in II-V semiconductor systems, and weak ionicity appears as a necessary condition for the stability of the CdSb structure type. It is argued that a chemical bonding scenario with mixed multicenter and two-center bonding resembles that of boron and boron-rich compounds and is typical of electron-poor $sp$-bonded semiconductors with average valence electron concentrations below four per atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.