Abstract

The charge-transport parameters of fluorine- and alkyl/alkoxy-substituted tetracene crystals have been investigated by means of density functional theory calculations. The intramolecular reorganization energy (vibronic coupling) is found to increase upon partial fluorination of tetracene and upon further alkoxy substitution, whereas alkyl substitution has a lesser impact. The calculated ionization energies are in agreement with electrochemical measurements and confirm that the electron injection barrier from conventional cathodes into partially fluorinated, alkyl/alkoxy-substituted tetracenes is expected to be smaller than into tetracene. Calculations of the intermolecular electronic couplings and of the crystal band structures have been performed to understand the role of packing on the charge-transport properties. A tight binding model with two sites per unit cell has been used to rationalize the results of the band-structure calculations. The largest electron mobility is predicted for the material wher...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.