Abstract

Understanding of the nature and extent of chemical bonding in uranyl coordination complexes is crucial for the design of new ligands for nuclear waste separation, uranium extraction from seawater, and other applications. We report here the synthesis, infrared spectroscopic characterization, and quantum chemical studies of a molecular uranyl-di-15-crown-5 complex. The structure and bonding of this unique complex featuring a distinctive 6-fold coplanar coordination staggered sandwich structure and an unusual non-perpendicular orientation of the uranyl moiety are evaluated using density functional theory and chemical bonding analyses. The results provide fundamental understanding of the coordination interaction of uranyl with oxygen-donor ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.