Abstract

Using first-principles calculations, we investigate electronic structures of α arsenic phosphide under strain. It is a two-dimensional monolayer composed of an equimolar mixture of phosphorus and arsenic, whose multilayer correspondents were synthesized very recently. According to structure optimizations and phonon calculations, the α phase branches into three distinct allotropes. Monolayers of the α1 and α3 phases are direct-gap semiconductors with band gaps that are similar to that of the α phosphorene. They exhibit anisotrpic carrier mobility. Specifically, the α3 phase exhibits the electron mobility of ∼10 000 cm2 V–1 s–1, which is 1 order of magnitude larger than that for the α phosphorene. Likewise, their electronic structures display highly anisotropic behavior under strain different from that of the α phosphorene. The complex response under strain can be mostly understood in terms of the relative alignment of bonding and antibonding As–P states under a specific strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.