Abstract

The η-Mo 4O 11 compound is a layered two-dimensional (2D) metallic system whose reduced dimensionality originates non-linear properties as charge density wave (CDW) instabilities. We report on synchrotron radiation angle resolved photoemission spectroscopy (ARPES) measurements in order to obtain a detailed picture of the electronic structure of this material. The symmetry of the states near the Fermi level ( E F) has been discussed in relation to the photoemission symmetry selections rules. Our results are in excellent agreement with previous tight-binding calculations and support the hidden nesting concept proposed to explain the CDW instabilities exhibited by this family of compounds. In addition, a very peculiar photoemission line-shape has been found with the presence of localized non-dispersive states. Some possible explanations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.