Abstract
We present measurements of electron-impact excitation cross sections into levels of the $4{p}^{5}5p$ configuration from the $J=0$ and $J=2$ metastable levels of krypton. Metastable-atom targets were generated using two different sources, a hollow-cathode discharge and via charge-exchange collisions between a fast ${\mathrm{Kr}}^{+}$ beam and Cs atoms. The metastable atoms are excited to $4{p}^{5}5p$ levels by a monoenergetic electron beam and the fluorescence from the levels are used to determine the excitation cross sections. Laser quenching of the hollow-cathode target is used to separate the signal contributions from excitation of the two metastable levels. Like excitation from the metastable levels of Ar, cross sections for dipole-allowed excitations are generally larger than ones for dipole-forbidden excitations. Krypton differs from Ar and Ne, however, in having a larger spin-orbit coupling for the $4{p}^{5}$ core so that the energy levels of each excited configuration segregate into two tiers based on the value of the core angular momentum. Cross sections for dipole-allowed excitation with a change in the core angular momentum are not only much smaller than their core-preserving counterparts, but also have different energy dependence. The measured cross sections are compared with recent theoretical calculations and with previous experimental work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.