Abstract

The electronic properties of graphene edges have been predicted to depend on their crystallographic orientation. The so-called zigzag (ZZ) edges haven been extensively explored theoretically and proposed for various electronic applications. However, their experimental study remains challenging due to the difficulty in realizing clean ZZ edges without disorder, reconstructions, or the presence of chemical functional groups. Here, we propose the ZZ-terminated, atomically sharp interfaces between graphene and hexagonal boron nitride (BN) as experimentally realizable, chemically stable model systems for graphene ZZ edges. Combining scanning tunneling microscopy and numerical methods, we explore the structure of graphene-BN interfaces and show them to host localized electronic states similar to those on the pristine graphene ZZ edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.