Abstract

Electronic states and growth modes of the Zn-deposited Cu(111) surface at 300K were quantitatively studied using core-level and valence photoelectron spectroscopies. Both Cu 2p and Zn 2p core-levels shifted to higher binding energy with increasing the amount of deposited Zn up to multilayer. The origin of the core-level shift of Cu 2p was further investigated by density functional theory calculations; the shift of the Cu 2p peak results from the change in the effective electrostatic potential (initial state effect) caused by the formation of Zn-Cu surface alloy, and the increase of coordination numbers of surface Cu atoms by Zn overlayer. The observed valence photoelectron spectra show the formation of the two atomic-layer Zn-Cu alloy up to the Zn coverage of 1ML, followed by the formation of three-dimensional Zn islands on the alloyed surface at 300K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call