Abstract

The rate of removal of material from SiO 2 as a result of heavy ion irradiation, with energies in which energy loss via excitation and ionization of the solid predominates, depends strongly on the stopping power and angle of incidence of the incoming ions. There appears to be a threshold stopping power for SiO 2 of 500 eV/(10 15 at/cm 2) (or 3.5 keV/nm). This electronic sputter yield has been found to reach values as large as 10 4 atoms/incoming ion for 66 MeV Ag ions at an angle of incidence of 7° with the plane of the surface. Strikingly, the electronic sputter yield is very small for thin SiO 2 layers of a thickness ⩽1 nm when grown on c-Si, but it is appreciable for such layers deposited on the insulator silicon nitride. The data are discussed in the light of existing models for electronic sputtering invoking also models for potential sputtering of SiO 2 by low-energy, highly charged ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.