Abstract

The CoNe(+) diatomic cation is produced by laser vaporization in a pulsed-nozzle source and studied with photodissociation spectroscopy at visible wavelengths. Vibronic structure is assigned to the (3)Π(2) ← (3)Δ(3) band system correlating to the Co(+)((3)P(2) ← (3)F(4)) + Ne asymptote. The origin band (13,529 cm(-1)) and a progression of 14 other vibrational bands are detected ending in the dissociation limit at 14,191 cm(-1). The excited state dissociation energy is therefore D(0)(') = 662 cm(-1), and an energetic cycle using this, the origin band energy, and the atomic transition produces a ground state dissociation energy of D(0)(") = 930 cm(-1). The excited state vibrational frequency is 116.1 cm(-1). A rotationally resolved study of the origin band confirms the electronic transition assignment and provides the bond distance of r(0)(") = 2.36 Å. The properties of CoNe(+) are compared to those of other CoRG(+) and MNe(+) complexes studied previously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.