Abstract

Electronic spectra of the gas-phase isoquinoline(+)-Ar and quinoline(+)-Ar complexes are recorded using photodissociation spectroscopy by monitoring the Ar loss channel. The D(3)←D(0) and D(4)←D(0) band origins for isoquinoline(+)-Ar are observed at 15245 ± 15 cm(-1) and 21960 ± 15 cm(-1), respectively, whereas for quinoline(+)-Ar they appear at 16050 ± 15 cm(-1) and 21955 ± 15 cm(-1), respectively. Strong vibronic progressions for the D(3)←D(0) band systems of both isoquinoline(+)-Ar and quinoline(+)-Ar are modeled and assigned in terms of ring deformation and carbon-carbon stretch vibrational modes using time-dependent density functional theory calculations in conjunction with Franck-Condon simulations. The properties of the isoquinoline(+) and quinoline(+) molecules are compared with those of the isoelectronic naphthalene(+) molecule. The existence of strong progressions in the visible spectra of isoquinoline(+)-Ar and quinoline(+)-Ar suggests that the corresponding isoquinoline(+) and quinoline(+) molecular cations are unlikely to be responsible for diffuse interstellar bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.