Abstract
Molecular dynamics computer simulations are used to elucidate the role of solvent polarity and interface structure in determining the electronic absorption and fluorescence line shapes for model dipolar solutes at the interface between water and one of four different organic liquids. The different organic liquids represent a range of molecular structure and polarity: 1-octanol, 1,2-dichloroethane, n-nonane, and carbon tetrachloride. The solute is represented by two rigidly connected Lennard-Jones spheres. The different electronic states correspond to different charges on the two Lennard-Jones centers. In each interfacial system, different choices of solute charge distribution and solute location relative to the interface (including the bulk region) are considered and provide insight into different microscopic factors that influence the electronic line shape. For the water/1,2-dichloroethane and water/CCl4 interfaces, all of the calculations are repeated while the interface is externally constrained to be smooth in order to investigate the role of surface roughness. The calculated electronic line shapes are Gaussians whose peak positions reflect solvent polarity, interface structure, and probe location. Their widths are in general agreement with the prediction of linear response theory. Although continuum electrostatic models predict qualitatively correct behavior, they miss interesting interfacial effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.