Abstract

We have studied the fluorescence and fluorescence excitation spectra at 300 K, 77 K, and 4.2 K for silicate gel matrices colored with meso-tetrapropylporphin by impregnation of the matrix with a solution of the pigment. Comparison of the data obtained with the absorption spectra in acidified solutions and analysis of the low-temperature fine-structure vibronic spectra, and also taking into account data obtained earlier for octaethylporphin in a xerogel showed formation of two cationic forms of meso-tetrapropylporphin in the gel matrix: the short-wavelength form has a dicationic structure, while the long-wavelength form has a monocationic structure. We have traced out the correlations of the vibrational structure in the spectra of the dicationic form with data for the porphin dication, and we have drawn a number of conclusions concerning the normal vibrational modes that are active in the vibronic fluorescence and absorption spectra of the studied cationic forms. Using the AM1 semiempirical quantum chemical method, we optimized the geometry of the mesotetrapropylporphin dication: the most stable of the possible conformers is the dication structure with saddleshaped macrocycle nonplanarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.