Abstract

The validity of Koopmans’ theorem in a series of 16 transition metal compounds with a large variety of 3d centers (Ti, Cr, Mn, Fe, Co, Ni, and Zn) is investigated. The reorganization energies are determined by means of the Green’s function method employed in a semiempirical INDO Hamiltonian. A self-energy approximation is used that allows a fragmentation of the calculated Koopmans’ defects into relaxation increments as well as into correlation parameters that take into account the loss of pair correlation in the electronic ground state and the modification of the pair correlation in the cationic hole state. The magnitude and the importance of these parameters are studied as a function of the 3d occupation pattern, the oxidation state of the transition metal center, the nature of the orbital wave functions and the one-particle energies. It is demonstrated that pair relaxation energies in the various hole states are by no means negligible in comparison to the relaxational corrections that lead to the most pronounced deviations from IKv,j (IKv,j=− εj). The limitations of purely relaxational models (e.g., ΔSCF approach) are analyzed in detail. The gradual modifications of the calculated Koopman’s defects within the 3d series are rationalized. The most pronounced reorganization energies are encountered in d6–d8 complexes. The magnitude of relaxation and correlation is reduced with a decreasing and an increasing number of 3d electrons. The physical background leading to the breakdown of Koopman’s theorem in 3d derivatives is compared with the results of recent studies in various molecular species (e.g., small molecules, organic lone-pair systems).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.