Abstract

The conductive properties of polypyrrole chains doped with ClO4- or MoO42- anions and the existence of polarons and bipolarons in these doped polypyrrole chains were investigated by performing computational calculations based on density functional theory (DFT). Doping with these anions was found to decrease the band gap of the polypyrrole. Theoretical calculations revealed that changing the type of oxidative agent applied does not affect the conversion of polypyrrole into a conducting polymer, but the conductivity of the doped polypyrrole does depend on the ratio of oxidant to polypyrrole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.