Abstract

Key parameters for organic semiconductors used as active layers in organic electronic devices are: solution processability, charge carriers mobility as well as the electron affinity (EA) and the ionization potential (IP) which determine their redox properties and by consequence their air stability. The purpose of the present work was to investigate the influence of different substituents at imide nitrogen atom (alkylaryl, thienylene and triarylamine) and at naphthalene core (triarylamine) on the IP and EA values in recently synthesized naphthalene bisimide derivatives, tested as promising semiconductors for flexible n-channel or ambipolar organic field effect transistors (OFETs). The ionization potentials were determined by Ultra-violet Photoelectron Spectroscopy (UPS) for thin semiconductor films evaporated in ultra-high vacuum. The values obtained by photoelectron spectroscopy were compared with the ones determined from electrochemical investigations of the semiconductors dissolved in an electrolyte solution. Using cyclic voltammetry the IPs was estimated from the onset of the first oxidation peak whereas EAs from the onset of the first reduction peak. In cases where it was not possible to record the oxidation wave in the electrolyte electrochemical window, the IPs values were calculated by subtracting the energy of the spectroscopically (UV–vis–NIR) determined band gap from the EA values and changing the sign. A good correlation between the spectroscopic (UPS) and electrochemical data was found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.