Abstract

We present a theoretical study of the piezoelectric polymer poly(vinylidene fluoride), PVDF. By density functional theory calculations, some of the distinct properties of this material have been obtained. Among such properties are hardness, capacitance, dipolar moment and energy associated with the conformational structural changes. For the calculations, we employed the B3LYP functional and the 6311+G(d,p) basis set. Five chain molecules of varying length were studied, H–(CH2–CF2) x –H, where x = 1–4 and 6 for the four different PVDF conformations, namely, I = Tp, II = TGa, III = TGp and IV = T3G, where T means trans and G means gauche.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.