Abstract
The electronic structure of poly(thiophene-3-methyl acetate) has been investigated using UV–vis absorption spectroscopy and quantum mechanical calculations. Experimental measures in chloroform solution indicate that the π-conjugation length increases with the polymer concentration, which is reflected by the red shift of the absorbance peak of the π-π* transition. On the other hand, the energy required for the π-π* transition has been found to decrease with the volatility of the solvent for concentrated polymer solutions, even though the influence of the solvent is very small for dilute solutions. Quantum mechanical calculations indicate that the interactions between the π-conjugated backbone and the methyl acetate side groups are very weak. On the other hand, the lowest energy transition predicted for an infinite polymer chain that adopts the anti-gauche and all-anti conformations is 2.8 and 1.9 eV, respectively. Finally, measurements on spin-casted nanofilms reflect that the π-π* transition energy increases with the thickness, which has been attributed to the distortion of the molecular conformation. In spite of this, the energy gap obtained for the thinnest film (1.52 eV) is significantly smaller than that determined for dilute and concentrated chloroform solutions (2.56 and 2.09 eV, respectively). The π-conjugation length and the energy required for the π-π* transition of poly(thiophene-3-methyl acetate) have been examined in different environments (i.e. gas-phase, dilute and concentrated solutions considering solvents with different polarity and volatility, and spin-casted nanofilms) using a combination of UV-vis spectroscopy and quantum mechanical calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.