Abstract

The electronic structure evolution of deficient halide perovskites with a general formula (A,A')1+xM1-xX3-x was investigated using the density functional theory. The focus is placed on characterization of changes in the bandgap, band alignment, effective mass, and optical properties of deficient perovskites at various concentrations of defects. We uncover unusual electronic properties of the defect corresponding to a M-X vacancy filled with an A' cation. This defect "repels" electrons and holes producing no trap states and, in moderate quantities (x ≤ 0.1), does not hinder charge transport properties of the material. This behavior is rationalized using a confinement model and provides additional insight to the defect tolerance of halide perovskites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.