Abstract

In this paper, we present a theoretical study of the quantized electronic states in Cd1-xZnxS quantum dots. The shape of the confining potential, the subband energies and their eigen envelope wave functions are calculated by solving a one-dimensional Schrodinger equation. Electrons and holes are assumed to be confined in dots having a flattened cylindrical geometry with a finite barrier height at the boundary. Optical absorption measurements are used to fit the bandgap edge of the Cd1-xZnxS nanocrystals. An analysis of the electron band parameters has been made as a function of Zn composition. Two main features were revealed: (i) a multiplicity in Cd1-xZnxS quantum dots with different crystalline sizes has been found to fit accurately experimental data in the composition range 0 ≤x ≤0.2; (ii) the fit did not, however, show a multiplicity for x higher than 0.4. On the other hand, we have calculated the energy level structure of coupled Cd1-xZnxS semiconductor quantum dots using the tight-binding approximation. As is found the Zn composition x = 0.4 is expected to be the most favorable to give rise a superlattice behavior for the Cd1-xZnxS quantum dots studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.