Abstract

We have used an atomic-force microscope tip to mechanically buckle single-walled carbon nanotubes. The resistance of the induced defects ranged from 10 to 100 kΩ and varied with the local Fermi level, as determined by scanned-gate microscopy. By forming two closely spaced defects on metallic nanotubes, we defined quantum dots less than 100 nm in length. These devices exhibited single-electron charging behavior at temperatures up to ∼165 K.

Highlights

  • This article was downloaded from Harvard University's DASH repository

  • Initial experiments performed on metallic nanotubes concentrated on tubes

  • Theoretical studies of the effects of mechanical deformation on electrical properties of carbon nanotubes have shown that localized distortions of the lattice should cause an increase in electron backscattering

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.