Abstract

We investigate van der Waals (vdW) heterojunctions by combining InSe and zigzag carbon nanotubes (CNT(n,0)) by first-principle calculations. When n ranges from 5 to 7, The heterojunctions show n-type Schottky contact. However, for n of 8, 9, and 11, the heterojunctions still retain the characteristic of semiconductors with bandgaps. The metallized InSe/CNT(10,0) heterojunction has the most amount of charge transfer and the highest tunneling probability. Ohmic contact can be formed in InSe/CNT(n,0) (n = 5–7) heterojunctions under the external electric field. The charge transfer is enhanced and Schottky barrier heights are significantly reduced in heterojunctions with Se vacancy defect. In vacancy defect causes the disappearance of Schottky barrier because of metallization of InSe and more charge transfer than Se vacancy defect in InSe/CNT. Our findings provide a direction for the application of InSe/CNT in tunable nanoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.