Abstract

In this work, we have constructed the hydrogenated hexagonal boron nitride (h-BN) by placing hydrogen atom at different surface sites. The possibility of hydrogen adsorption on the BN surface has been estimated by calculating the adsorption energy. The electronic properties were calculated for different hydrogenated BNs. The theoretical calculation was based on the Density Functional Theory (DFT). The electron-exchange energy was treated within the most conventional functional called generalized gradient approximation. The calculated band gap of pure BN is 3.80 eV. The adsorption of two H-atoms at two symmetrical sites of B and N sites reduces the band gap value to 3.5 eV. However, in all other combination the systems show dispersed band at the Fermi level exhibiting conducting behavior. Moreover, from the analysis of band structure and Density Of States we can conclude that, the hydrogenation tunes the band gap of hexagonal boron nitride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.