Abstract

It has been found in earlier calculations that by replacing one C atom with one N atom, one electron is doped in the lowest unoccupied molecular orbital (LUMO) of C60 while by replacing with one B atom, one hole is doped in the highest occupied molecular orbital (HOMO) of C60. In this paper, we have performed discrete-variational local density functional calculations on single silicon, oxygen and beryllium-substituted heterofullerenes. No carrier is doped in the C60-derived orbitals upon Si substitution except for the reduced LUMO–HOMO gap. Two electrons are doped in the LUMO of C60 upon O substitution and instead, two holes are doped in the HOMO of C60 upon Be substitution. Ionization potentials and electron affinities can be altered dramatically by substitution and in general, C60 becomes more reactive upon substitution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call