Abstract

In this work, we suggest an approach to manipulate the electronic properties of graphene oxide in a controllable manner. We study graphene nanoroads paved inside graphene oxide using density functional calculations. We show that this patterning allows transforming an insulator, graphene oxide, into a semiconductor or metal depending on the orientation of the nanoroads and their magnetic state. As a semiconductor, patterned graphene oxide is characterized by notably low effective masses of charge carriers. Additionally, we demonstrate the possibility to force the transition from a semiconducting to a half-metallic state in a controllable manner, by application of an external electric field. We believe that this remarkable opportunity to combine and control the electronic and magnetic properties of a material within a single sheet of graphene oxide paves the way towards new applications of graphene-oxide-based devices in 2D optoelectronics and spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call