Abstract

Abstract Acceptor doping of oxides generally results in the formation of charge-compensating oxygen vacancies, leading to enhanced ionic conductivity. Ca-doped LaFeO3 is one such example which has been considered for use in cathode materials of solid oxide fuel cells. In the present work, we determine the structural, electronic, and magnetic properties of individual intrinsic and extrinsic point defects and defect clusters in Ca-doped LaFeO3. We find that the concentration of oxygen vacancies can increase through the formation of dopant-vacancy clusters. Oxygen vacancy concentration will influence the diffusivity of oxygen which in La-based perovskites is shown to be governed by the oxygen vacancy concentration. We also calculate the interaction between dopant ion and oxygen vacancies and find that oxygen vacancies will not be trapped by the dopant species as found in other oxide materials. These findings suggest an enhanced conductivity of oxygen in LaFeO3 under Ca doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.