Abstract

In this study, we have carried out a detailed theoretical investigation on the binding energy of an exciton in type-II CdTe/CdSe core/shell/well/shell (CSWS) nanocrystal quantum dot (NCQD) in the strong confinement region. The calculations are based on the effective mass approximation, and the coulombic interaction between electron and hole is introduced using Hartree approximation. With these theoretical basis, the coupled Poisson–Schrodinger equations are solved in a self consistent iterative manner. In strong confinement regime, the binding energy variation with core radius in type-II NCQD shows a peak. And this peak widens for larger well width and inner shell thickness. Our study suggests that, this anomalous behavior of exciton binding energy is due to an effect called ‘positional flip of exciton’, caused by the faster tunneling of hole to the inner layer in comparison with electron. Our results can be applied in laser and optoelectronic engineering for designing more efficient optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call