Abstract
The electronic properties of citrate stabilised Ag nanoparticles with sizes ranging from 4 to 35 nm were investigated by the Kelvin probe method and high resolution XPS. Two and three dimensional assemblies of the particles were prepared by electrostatic adsorption from aqueous solution onto poly-l-lysine modified surfaces. The work function of the Ag particles increased from 5.29 +/- 0.05 to 5.53 +/- 0.05 eV as the particle size decreased. These values are approximately 0.8 eV higher than for clean polycrystalline Ag surfaces. The origin of these remarkable high work functions cannot be explained in terms of either citrate induced changes in the surface dipole or image forces in the confined metallic domains. High resolution XPS spectra of the Ag 3d(5/2) core level were characterised by broad bands and a 0.4 eV shift towards lower binding energies for the smallest particles. Comparisons with reported studies on extended Ag surfaces indicate that as-grown particles exhibit partially oxidised surfaces. The behaviour of the work function further suggests that the strength of the Ag-O bonding increases with decreasing particle sizes. These findings are highly relevant to the interpretation of the catalytic properties of Ag nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.