Abstract

The low-energy electronic properties of a few graphite layers with AA and ABC stacking under application of the electric field (F), perpendicular to the layers, are explored through the tight-binding model. They strongly depend on the interlayer interactions, the stacking sequences, the layer numbers, and the field strength. In the absence or presence of F, the AA-stacked N-layer graphites (N ¼ 3 and 4) exhibit the linear bands near the Fermi energy. The interlayer interactions and electric field chiefly shift the Fermi momenta and the state energies. The ABC-stacked N-layer graphites are characterized by the complicated low-energy bands due to the stacking effect, on which F has a great influence—the change of the state energies and the subband spacing, the opening of a band gap, the production of the oscillating bands, and the increase of the band-edge states. As a result, the two kinds of special structure, whose positions and heights are modulated by F, are found in the density of states (DOS) in contrast to the featureless DOS of the AA systems. The comparison with the AB-stacked few-layer graphites is also made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.