Abstract

In the pursuit of developing routes to enhance magnetic Kitaev interactions in α-RuCl_{3}, as well as probing doping effects, we investigate the electronic properties of α-RuCl_{3} in proximity to graphene. We study α-RuCl_{3}/graphene heterostructures via abinitio density functional theory calculations, Wannier projection, and nonperturbative exact diagonalization methods. We show that α-RuCl_{3} becomes strained when placed on graphene and charge transfer occurs between the two layers, making α-RuCl_{3} (graphene) lightly electron doped (hole doped). This gives rise to an insulator-to-metal transition in α-RuCl_{3} with the Fermi energy located close to the bottom of the upper Hubbard band of the t_{2g} manifold. These results suggest the possibility of realizing metallic and even exotic superconducting states. Moreover, we show that in the strained α-RuCl_{3} monolayer the Kitaev interactions are enhanced by more than 50% compared to the unstrained bulk structure. Finally, we discuss scenarios related to transport experiments in α-RuCl_{3}/graphene heterostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.