Abstract

In this work we use the ab initio calculations to study the intercalation of lithium (Li) atoms in the channels of the single-wall boron nitride nanotube (BNNT) bundles. The relaxed structure as well as the electronic band structure were obtained. Results reveals that Li insertion modifies the band structure by shifting the Fermi energy to conduction band. The Li atoms act as electron donors and this modifies the electronic properties of the BNNT bundles due the intercalation. The electronic properties changes induced in the effects are dependent on Li atom numbers per nanotube.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call