Abstract

We employ state-of-the-art ab initio simulations within the dynamical mean-field theory to study three likely phases of iron (hcp, fcc, and bcc) at the Earth's core conditions. We demonstrate that the correction to the electronic free energy due to correlations can be significant for the relative stability of the phases. The strongest effect is observed in bcc Fe, which shows a non-Fermi-liquid behavior, and where a Curie-Weiss behavior of the uniform susceptibility hints at a local magnetic moment still existing at 5800 K and 300 GPa. We predict that all three structures have sufficiently high magnetic susceptibility to stabilize the geodynamo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.