Abstract

We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.