Abstract

Voltage imaging allows mapping of the membrane potential in living cells. Yet, current intensity-based imaging approaches are limited to relative membrane potential changes, missing important information conveyed by the absolute value of the membrane voltage. This challenge arises from various factors affecting the signal intensity, such as concentration, illumination intensity, and photobleaching. Here, we demonstrate electronic preresonance hyperspectral stimulated Raman scattering (EPR-hSRS) for spectroscopic detection of the membrane voltage using a near-infrared-absorbing microbial rhodopsin expressed in E. coli. This newly developed near-infrared active microbial rhodopsin enables electronic preresonance SRS imaging at high sensitivity. By spectral profiling, we identified voltage-sensitive SRS peaks in the fingerprint region in single E. coli cells. These spectral signatures offer a new approach for quantitation of the absolute membrane voltage in living cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call