Abstract

By employing first-principles calculations, we investigate the stabilities, quasi-particle band structures, and photocatalytic and optical properties of monolayer boron pnictides. Calculations indicate that monolayer boron pnictides have highly thermal stabilities verified by molecular dynamics, appreciable direct bandgaps, and good optical absorptions in the visible and near-infrared ranges. In addition, the relatively small exciton binding energies are also observed in the three systems, facilitating the separation of photogenerated electrons and holes. More interestingly, monolayer boron phosphide satisfies the criteria of photocatalyst for water splitting, and its photocatalytic performance can be further enhanced by applying biaxial tensile strain. Our researches provide valuable insight for finding monolayer boron pnictides applied in optoelectronics and photocatalytic water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.