Abstract

Using the functional renormalization group, we investigate the electron instability in the single-sheet BC$_3$ when the electron filling is near a type-II van Hove singularity. For a finite Hubbard interaction, the ferromagnetic-like spin density wave order dominates in the immediate vicinity of the singularity. Elsewhere near the singularity the p-wave superconductivity prevails. We also find that a small nearest-neighbor Coulomb repulsion can enhance the superconductivity. Our results show that BC$_3$ would be a promising candidate to realize topological $p+ip'$ superconductivity, but the transition temperature is practically sizable only if the local interaction is moderately strong.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.