Abstract

Herein, the optoelectronic, structural, thermoelectric and elastic features of halide double perovskites (HDPs) Cs2XInCl6(X=Ag, Na) are examined by using full‐potential linearized augmented plane wave (FP‐LAPW) technique. The Generalized Gradient Approximation (GGA) and Tran‐Blaha modified Becke‐Johnson (TB‐mBJ) potential is employed to figure out the features of mentioned compounds. The computed values of direct band‐gaps (Eg) for Cs2AgInCl6 and Cs2NaInCl6 compounds are 2.52 and 5.24 eV, correspondingly. The stability of perovskites is confirmed in terms of formation energy ΔHf, tolerance factor (τ) and octahedral factor. Furthermore, optical properties analysis demonstrates that studied compound exhibit conductivity and absorptivity across a broad range of incident photon energy with minimum R(ω). Moreover, outcomes of elastic parameters display isotropic and ductile nature for both materials. Thermoelectric (TE) properties like thermal conductivity (k/τ), power factor (PF), electrical conductivity (σ/τ) and Seebeck coefficient (S) are also calculated by utilizing BoltzTrap code. Cs2NaInCl6 attained the maximum value of ZT (0.76) with PF of 0.42. Computed TE and optical parameters indicate that Cs2XInCl6(X=Ag, Na) are promising for usages in solar absorbing and energy conversion devices.This article is protected by copyright. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.