Abstract
Different supervised pattern recognition treatments were applied to the signals generated by an electronic nose for the classification of vegetable oils. The system, comprising six metal oxide semiconductor sensors, was used to generate a pattern of the volatile compounds present in the samples. Feature selection techniques were employed to choose a set of optimally discriminant variables. The K-nearest neighbours (KNN), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), soft independent modelling of class analogy (SIMCA) and artificial neural networks (ANN) were applied to model the different classes. The results obtained indicated good classification and prediction capabilities, the neural networks being those that afforded the best results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.